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Exercice 1. Composition et produits de revétements. Soient ¢ : F — E, p : E — B,

p' . E'— B’ des revétements.

1. Supposons que p est a fibres finies. Montrer que p o g est un revétement.

2. Montrer que p x p’ : E x E' — B x B’ est un revétement.

3. (optionnel) Peut-on enlever I'hypothese de finitude pour la question 17

4. (optionnel) Est-ce qu'un produit infini de revétements est toujours un revétement ?

Solution 1.

1. Soit b € B, écrivons p~1(b) = {ey,...,ex}. Soit Uy,..., Uy C E des ouverts adaptés pour q
et tels que e; € U; pour tout 4 = 1,..., k. Soit V' C B un voisinage de b tel que p|,-1(y) est
trivial (i.e. V adapté). En particulier, chaque élément de V' a exactement k préimages dans
E car c’est le cas de b € B. Comme ﬂle p(U;) est un voisinage ouvert de b, on peut réduire

V' pour supposer V C ﬂlep(UZ-). Comme tout point de V' a alors k préimages dans | U;, on
en déduit que

pﬂmzuw

ot U/ = p~ (V)N U;. On a ainsi que V est un ouvert trivialisant le revétement g o p.

2. Soient b € B, b € B' et U, U’ des ouverts trivialisants autour de b et b’ respectivement avec
des homéomorphismes p~*(U) ~ U x F et p'"(U') ~ U’' x F' ou F et I’ sont des espaces
topologiques discrets.

On a alors

(pxp) M (UxU)~UxU x FxF,
ce qui montre que c’est bien un revetement.
3. Non, on peut construire un contre-exemple avec les boucles d’oreilles hawaiennes.

4. Non, on peut considérer p.., un produit infini de copies du revétement R — S! et remarquer
que par définition de la topologie produit, un ouvert en bas est produit d’ouverts de S! et
qui sont égaux a S!, sauf un nombre fini, donc ne permet pas de trivialiser localement p...
Ainsi, p,, n’est pas un revétement.

Exercice 2. Collier de perles. Comprendre, expliquer et démontrer que les espaces suivants
forment des revéments d'un bouquet de deux cercles S* Vv S*.

1. Deux revétements a deux feuillets pour commencer :

sl



2. Un revétement a un nombre infini de feuillets aussi appelé le collier de perles :

00000,

3. Dessiner un revétement contractile du collier de perle.

Solution 2. On utilise ici la propriété suivante : un quotient par une action de groupe libre et
totalement discontinue (une composante connexe est un signleton) est un revétement.

1. Notons les espaces de gauche et de droite dans I'image par X et Y, respectivement. Appelons
les cercles avec une seule fleche a, et désignons par b les demi-cercles supérieur et inférieur
du cercle central (en tenant compte de l'orientation). Notons Cy le groupe cyclique d’ordre 2.
Nous définissons une action de Cy sur X en envoyant la copie gauche de a sur sa copie droite
tout en préservant 'orientation, et en envoyant le demi-cercle supérieur b sur le demi-cercle
inférieur b en conservant l'orientation. Par cette construction, nous voyons que ’action de Cs
est totalement discontinue, donc 'application

p: X — X/Cy

est un revétement et l'espace quotient est bien SV St

De maniere similaire, nous définissons une action de C; sur Y en envoyant 1’arc simple gauche
et I'arc a double fleches gauche sur leurs homologues a droite tout en préservant ’orienta-
tion. Cette action est également totalement discontinue, ce qui nous permet d’obtenir un
revétement

q:Y =Y/G,
ou l'espace quotient Y/G est identifi¢ & S v St

2. Soit A I'espace décrit ci-dessus. Notons les cercles par a et les segments reliant deux cercles
par b. Le groupe Z agit sur A par translation : cette action envoie chaque cercle sur le cercle
a sa droite et chaque segment sur le segment correspondant a sa droite. Cette action est
totalement discontinue. L’orbite de cette action, A/Z, est homéomorphe & S*V St ce qui fait
de
p:A—Stvst

un revétement.

3. Voici un dessin d’un tel revétement, appelé graphe de Cayley, que 'on note X dans la suite.
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Montrons qu’il est contractile. Supposons que chaque aréte de X ait une longueur égale a 1,
et observons qu’il existe un unique chemin le plus court reliant chaque point z € X au centre
e. Ainsi, nous obtenons une fonction de distance bien définie d : X — Rxy.
Etant donné un point x € X, nous notons P, 'unique chemin le plus court de e & x. Observons
que la restriction de d & P, définit un homéomorphisme d, de P, sur [0, d(z)].
Remarquons que [0, d(z)] est contractile via I'homotopie de contraction F' : [0,d(z)] x I —
0, d(x)] définie par

Fy,t) = d(y)(1 —1).

Nous pouvons maintenant étendre F' a tout X en définissant
F:XxI— X, F(w,t) =d;*(d(z)(1 —1)).

Ainsi, le graphe de Cayley X est contractile.

Exercice 3. Somme connexe de la bouteille de Klein et du plan projectif. Le but est
de construire la somme connexe K#RP?. Des dessins clairs et des explications concernant les
opérations de découpage et d’identification sont demandées mais une paramétrisation explicite
n’est pas nécessaire. La bouteille de Klein K est le quotient du carré en identifiant les cotés opposés
horizontaux a; et ag par (s,0) ~ (s,1) et les verticaux by et by par (1,¢) ~ (0,1 — ). Pour RP? on
choisit le modele D? quotienté par la relation antipodale sur le bord.

1. Construire la somme connexe K#RP? en montrant que c’est un espace homéomorphe au
quotient d’'un hexagone

2. Montrer que K#RP? est un espace homéomorphe & un wedge de trois cercles auquel on
attache une unique 2-cellule.

Solution 3.

1. On dit qu’'une relation d’équivalence est définie par une concaténation de chemin a x b si on
identifie a(t) ~ b(t) pour tout ¢t € I. Ainsi, dans le quotient, I'image de a b est homotope au
lacet constant.
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FiGURE 1 — Construction de la somme connexe de K et RP?



On appelle ¢; 'hémicycle supérieur de D? parcouru dans le sens trigonoméetrique et c,
I’hémicycle inférieur parcouru dans le sens antitrigonoméetrique. On identifie RP? au quo-
tient de D? par la relation d’équivalence déterminée par le chemin c; % co. Par définition de la
somme connexe de deux surfaces on construit K#RP? en faisant des choix : d’abord un point
t € K, un voisinage ouvert U de ¢ homéomorphe a un disque et dont le bord est homéomorphe
a un cercle paramétrisé par un lacet indiqué par d; sur le dessin ci-dessous effectué dans le
carré I x I dont le tore est un quotient. Ensuite, de maniere analogue dans le plan projectif
pour un point 7, un voisinage V' dont le bord est paramétrisé par le lacet ds. Le dessin est
fait dans le disque dont RP? est un quotient.

On appelle ay, b, as, by les segments du bord du carré de telle sorte que a; * by x ag x by soient
un lacet parcourant le bord du carré. Appelons R la relation d’équivalence donnée par le
chemin a; x by xa; ' xby et § la relation antipodale sur le bord de D?. Alors la somme connexe
K#RP? est la réunion disjointe de (I x I)\ U et D*\ V qu’on quotiente par la relation
d’équivalence T identifiant les lacets d; et ds, puis continuant avec R et 8. Pour effectuer
cette construction on identifie les deux polygones troués ci-dessus avec des quotients. Le carré
troué est le quotient d’'un pentagone dont on identifie deux sommets successifs A et B, le
disque troué est le quotient d’un triangle dont on identifie deux sommets A’ et B’.

En résumé l'espace cherché est le quotient de la réunion disjointe d’un pentagone et d’un
triangle. La relation d’qéuivalence est décrite en trois temps : on identifie les points A et B,
aussi A et B'; puis on identifie les cotés aq et aq, by et by, et ¢; et ¢ dans le sens des fleches
indiqués sur le dessin; enfin on identifie les bords des voisinages U et V.

Or, l'ordre des identifications n’a pas d’importance. On peut aussi choisir de commencer par
la fin, donc 7 et identifier d; avec ds. On obtient alors un hexagone dont les cotés sont décorés
par des fleches et des lettres pour faciliter la compréhension des quotients.

On identifie ensuite les paires de cotés et on observe que cette deuxieme opération identifie déja
A et B, car ils ont été identifié respectivement avec A’ et B’ a la premiere étape. Autrement
dit K#RP? est un espace quotient d’un hexagone par la relation d’équivalence déterminée
par le chemin ay * by x ay ™ * by * ¢ % C3.

. On considere le diagramme commutatif suivant o H désigne un hexagone régulier et OH son
bord :
OH — H

l7 |

OH/A — H/B

La relation B est la relation décrite en 2, et A est la relation restreinte au bord de H. Il
s’agit donc de la relation qui identifie les six cotés deux a deux selon l'ordre et le sens indiqué
par le mot a; * by * a5 Ly by * €1 * ¢o. Comme tous les sommets sont identifiés, espace OH JA
est un wedge de trois cercles S} Vv S}V SL L’indice permet de se souvenir de quels segments
chaque cercle est issu, et on appelle le lacet faisant le tour du cercle par la méme lettre. Ainsi
a: St — Slv Stv St désigne Phoméomorphisme S — S} suivi de l'inclusion canonique
dans le wedge. Le carré ci-dessus nous permet d’identifier H/B & homéomorphisme pres avec
le pushout de 0H/A < OH — H, puisque la propriété universelle du pushout donne une
bijection continue entre deux espaces compacts et séparés.

Mais l'espace et sous-espace H et OH sont homéomorphes & D? et S' = 9D?, si bien que
K#RP? est un espace homéomorphe au pushout du diagramme

D? st s gty sty st



et il reste a identifier f’ qui correspond a f ci-dessus :

Cal f — ol 1 1
fiS'~0H = 0H/A~ S,V S, VS,
Le premier homéomorphisme identifie le lacet ¢t — €™ avec la concaténation ay by xay Lyby*
1 * co par la partie 1. En passant au quotient celui-ci devient précisément axbxa~ ! xb*cxc,
ce qui nous permet de conclure.

Remarque : La composition 7o f’ ou i est I'inclusion du wedge de trois cercles dans la somme
connexe factorise par D? par la partie 3. Comme le disque est constractile, le lacet axbxay ' %
b % ¢ * ¢ est homotopiquement trivial dans le disque, par conséquent aussi dans K #RP?.

Exercice 4. Homotopies libres et conjugaison. Soit X un espace topologique connexe par
arcs, et soit 2 un point de X. On appelle lacet libre dans X une application continue f : S! — X.
Deux lacets libres fy et fi sont dits librement homotopes s’ils sont homotopes (par une homotopie
non nécessairement pointée).

Montrer que I’ensemble des classes d’homotopie libre est en bijection avec I’ensemble des classes de
conjugaison de (X, z).

Solution 4. On note L(X) l'ensemble des classes d’homotopie libre de X. Comme deux lacets
homotopes sont bien entendu également librement homotopes, il y a une application bien définie

m (X, z) = L(X)

envoyant la classe d'un lacet sur sa classe d’homotopie libre. Elle est surjective : soit v un lacet de
base un point y € X, et soit £ : [0, 1] — X un chemin de z vers y. Alors v est librement homotope
au chemin (/=1 par I'homotopie :

U(s+4t(1 —s)) si0<t< i
H(t,s) = < (4t —1) sig<t<s:
l(s+(1—s)(2—2t) siz<t<1

Nous devons montrer que cette application est constante sur les classes de conjugaison dans 71 ( X, z).
Pour cela, on peut encore utiliser 'homotopie ci-dessus. L’application ci-dessus passe donc au
quotient pour donner une application bien définie des classes de conjugaison dans (X, x) vers
L(X). Il suffit maintenant de montrer qu’elle est injective, c’est-a-dire que deux lacets basés en z
et librement homotopes sont conjugués dans (X, x).

Soient fy et f; deux lacets basés en x et librement homotopes, et soit H : [0,1] x [0,1] — X une
homotopie libre telle que H(-,0) = fo et H(-,1) = fi. On remarque que le chemin v : ¢ — H(0, )
est un lacet basé en z. Nous allons construire une homotopie de lacets entre fy et v fiy L. A temps
t, cette homotopie parcourt le lacet v de 0 a ¢, puis parcourt le lacet H(-,t), puis reparcourt v de
t a 0. Une telle homotopie est donnée par exemple par :

H(0, 4st) si0<t<:
H(t,s) =< H(4t —1,s) sig<t<s:
H(0,s(2—2t)) sii<t<1

Remarque. Une autre maniere de voir qu’un lacet et son conjugué sont librement homotopes :
soient «, 5 deux lacets. On rappelle que par définition af est le lacet v qui parcourt tout o pendant



une moitié du temps (s € [0,1/2]), et § pendant I'autre moitié du temps (s € [1/2,1]). On construit
une homotopie libre entre af et fa de la maniére suivante : a l'instant ¢, 'application H(-,t)
commence a parcourir o de t a 1, ensuite parcourt 3, puis reparcourt a de 0 a t.

H(t,s) = {aﬁ(t *5) (1)

t
af(t—1+3) si <

c'>|/\

1—s
SR
t <

—_

Ainsi, 3 est librement homotope & a~!Ba.

Exercice 5. Théoréme de Brouwer. On appelle rétraction une application (pointée) r : X — X
telle que 7(X) = A et r|4 = id4. Notons ¢ I'inclusion (pointée) de A dans X. Si a est le point base
de A on choisit x = i(a) comme point base pour X.

1. Montrer que si r : X — A est une rétraction, on a une injection i, : m(A4,a) = m (X, x).

2. Montrer que toute application h : D? — D? admet un point fixe, i.e. x € D? tel que h(x) = .

Indication : Raisonner par ’absurde. Chercher & utiliser la question 1 avec A = S' et X = D?.

Solution 5.

1. Comme r oi =idya, on a que (ida). = (r o), = 7, 0 i, est un isomorphisme, on obtient que
14 est injective.

2. Supposons par I’absurde que h(z) # z pour tout z € D% On peut alors définir une application
r . D* — St telle que 7(x) est le point du bord de D? qui intersecte la demi-droite partant
de h(z) et passant par x (faire un dessin). Il est clair que r est continue puisque h l'est. De
plus, si # € S*, on a r(z) = x. Donc r est une rétraction de D? sur S', mais par la question
1 et comme il n’y a pas d’injection 7 (S') — 7,(D?), c’est absurde.



