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Exercice 1. Composition et produits de revêtements. Soient q : F → E, p : E → B,
p′ : E ′ → B′ des revêtements.

1. Supposons que p est à fibres finies. Montrer que p ◦ q est un revêtement.

2. Montrer que p× p′ : E × E ′ → B ×B′ est un revêtement.

3. (optionnel) Peut-on enlever l’hypothèse de finitude pour la question 1 ?

4. (optionnel) Est-ce qu’un produit infini de revêtements est toujours un revêtement ?

Solution 1.

1. Soit b ∈ B, écrivons p−1(b) = {e1, . . . , ek}. Soit U1, . . . , Uk ⊆ E des ouverts adaptés pour q
et tels que ei ∈ Ui pour tout i = 1, . . . , k. Soit V ⊆ B un voisinage de b tel que p|p−1(V ) est
trivial (i.e. V adapté). En particulier, chaque élément de V a exactement k préimages dans
E car c’est le cas de b ∈ B. Comme

⋂k
i=1 p(Ui) est un voisinage ouvert de b, on peut réduire

V pour supposer V ⊆
⋂k

i=1 p(Ui). Comme tout point de V a alors k préimages dans
⋃
Ui, on

en déduit que

p−1(V ) =
⊔
i

U ′
i

où U ′
i = p−1(V ) ∩ Ui. On a ainsi que V est un ouvert trivialisant le revêtement q ◦ p.

2. Soient b ∈ B, b′ ∈ B′ et U , U ′ des ouverts trivialisants autour de b et b′ respectivement avec
des homéomorphismes p−1(U) ≃ U × F et p′−1(U ′) ≃ U ′ × F ′ où F et F ′ sont des espaces
topologiques discrets.

On a alors

(p× p′)−1(U × U ′) ≃ U × U ′ × F × F ′,

ce qui montre que c’est bien un revêtement.

3. Non, on peut construire un contre-exemple avec les boucles d’oreilles hawaiennes.

4. Non, on peut considérer p∞, un produit infini de copies du revêtement R→ S1 et remarquer
que par définition de la topologie produit, un ouvert en bas est produit d’ouverts de S1 et
qui sont égaux à S1, sauf un nombre fini, donc ne permet pas de trivialiser localement p∞.
Ainsi, p∞ n’est pas un revêtement.

Exercice 2. Collier de perles. Comprendre, expliquer et démontrer que les espaces suivants
forment des revêments d’un bouquet de deux cercles S1 ∨ S1.

1. Deux revêtements à deux feuillets pour commencer :



2. Un revêtement à un nombre infini de feuillets aussi appelé le collier de perles :

3. Dessiner un revêtement contractile du collier de perle.

Solution 2. On utilise ici la propriété suivante : un quotient par une action de groupe libre et
totalement discontinue (une composante connexe est un signleton) est un revêtement.

1. Notons les espaces de gauche et de droite dans l’image par X et Y , respectivement. Appelons
les cercles avec une seule flèche a, et désignons par b les demi-cercles supérieur et inférieur
du cercle central (en tenant compte de l’orientation). Notons C2 le groupe cyclique d’ordre 2.
Nous définissons une action de C2 sur X en envoyant la copie gauche de a sur sa copie droite
tout en préservant l’orientation, et en envoyant le demi-cercle supérieur b sur le demi-cercle
inférieur b en conservant l’orientation. Par cette construction, nous voyons que l’action de C2

est totalement discontinue, donc l’application

p : X → X/C2

est un revêtement et l’espace quotient est bien S1 ∨ S1.

De manière similaire, nous définissons une action de C2 sur Y en envoyant l’arc simple gauche
et l’arc à double flèches gauche sur leurs homologues à droite tout en préservant l’orienta-
tion. Cette action est également totalement discontinue, ce qui nous permet d’obtenir un
revêtement

q : Y → Y/G,

où l’espace quotient Y/G est identifié à S1 ∨ S1.

2. Soit A l’espace décrit ci-dessus. Notons les cercles par a et les segments reliant deux cercles
par b. Le groupe Z agit sur A par translation : cette action envoie chaque cercle sur le cercle
à sa droite et chaque segment sur le segment correspondant à sa droite. Cette action est
totalement discontinue. L’orbite de cette action, A/Z, est homéomorphe à S1∨S1, ce qui fait
de

p : A→ S1 ∨ S1

un revêtement.

3. Voici un dessin d’un tel revêtement, appelé graphe de Cayley, que l’on note X dans la suite.



Montrons qu’il est contractile. Supposons que chaque arête de X ait une longueur égale à 1,
et observons qu’il existe un unique chemin le plus court reliant chaque point x ∈ X au centre
e. Ainsi, nous obtenons une fonction de distance bien définie d : X → R≥0.

Étant donné un point x ∈ X, nous notons Px l’unique chemin le plus court de e à x. Observons
que la restriction de d à Px définit un homéomorphisme dx de Px sur [0, d(x)].

Remarquons que [0, d(x)] est contractile via l’homotopie de contraction F : [0, d(x)] × I →
[0, d(x)] définie par

F (y, t) = d(y)(1− t).

Nous pouvons maintenant étendre F à tout X en définissant

F̃ : X × I → X, F̃ (x, t) = d−1
x (d(x)(1− t)).

Ainsi, le graphe de Cayley X est contractile.

Exercice 3. Somme connexe de la bouteille de Klein et du plan projectif. Le but est
de construire la somme connexe K#RP 2. Des dessins clairs et des explications concernant les
opérations de découpage et d’identification sont demandées mais une paramétrisation explicite
n’est pas nécessaire. La bouteille de Klein K est le quotient du carré en identifiant les côtés opposés
horizontaux a1 et a2 par (s, 0) ∼ (s, 1) et les verticaux b1 et b2 par (1, t) ∼ (0, 1− t). Pour RP 2 on
choisit le modèle D2 quotienté par la relation antipodale sur le bord.

1. Construire la somme connexe K#RP 2 en montrant que c’est un espace homéomorphe au
quotient d’un hexagone

2. Montrer que K#RP 2 est un espace homéomorphe à un wedge de trois cercles auquel on
attache une unique 2-cellule.

Solution 3.

1. On dit qu’une relation d’équivalence est définie par une concaténation de chemin a ⋆ b si on
identifie a(t) ∼ b(t) pour tout t ∈ I. Ainsi, dans le quotient, l’image de a ⋆ b est homotope au
lacet constant.



Figure 1 – Construction de la somme connexe de K et RP 2



On appelle c1 l’hémicycle supérieur de D2 parcouru dans le sens trigonoméetrique et c2
l’hémicycle inférieur parcouru dans le sens antitrigonoméetrique. On identifie RP 2 au quo-
tient de D2 par la relation d’équivalence déterminée par le chemin c1 ⋆ c2. Par définition de la
somme connexe de deux surfaces on construit K#RP 2 en faisant des choix : d’abord un point
t ∈ K, un voisinage ouvert U de t homéomorphe à un disque et dont le bord est homéomorphe
à un cercle paramétrisé par un lacet indiqué par d1 sur le dessin ci-dessous effectué dans le
carré I × I dont le tore est un quotient. Ensuite, de manière analogue dans le plan projectif
pour un point r, un voisinage V dont le bord est paramétrisé par le lacet d2. Le dessin est
fait dans le disque dont RP 2 est un quotient.

On appelle a1, b2, a2, b2 les segments du bord du carré de telle sorte que a1 ⋆ b1 ⋆ a2 ⋆ b2 soient
un lacet parcourant le bord du carré. Appelons R la relation d’équivalence donnée par le
chemin a1 ⋆ b1 ⋆ a

−1
2 ⋆ b2 et S la relation antipodale sur le bord de D2. Alors la somme connexe

K#RP 2 est la réunion disjointe de (I × I) \ U et D2 \ V qu’on quotiente par la relation
d’équivalence T identifiant les lacets d1 et d2, puis continuant avec R et S. Pour effectuer
cette construction on identifie les deux polygones troués ci-dessus avec des quotients. Le carré
troué est le quotient d’un pentagone dont on identifie deux sommets successifs A et B, le
disque troué est le quotient d’un triangle dont on identifie deux sommets A′ et B′.

En résumé l’espace cherché est le quotient de la réunion disjointe d’un pentagone et d’un
triangle. La relation d’qéuivalence est décrite en trois temps : on identifie les points A et B,
aussi A′ et B′ ; puis on identifie les côtés a1 et a2, b1 et b2, et c1 et c2 dans le sens des flèches
indiqués sur le dessin ; enfin on identifie les bords des voisinages U et V .

Or, l’ordre des identifications n’a pas d’importance. On peut aussi choisir de commencer par
la fin, donc T et identifier d1 avec d2. On obtient alors un hexagone dont les côtés sont décorés
par des flèches et des lettres pour faciliter la compréhension des quotients.

On identifie ensuite les paires de côtés et on observe que cette deuxième opération identifie déjà
A et B, car ils ont été identifié respectivement avec A′ et B′ à la première étape. Autrement
dit K#RP 2 est un espace quotient d’un hexagone par la relation d’équivalence déterminée
par le chemin a1 ⋆ b1 ⋆ a

−1
2 ⋆ b2 ⋆ c1 ⋆ c2.

2. On considère le diagramme commutatif suivant où H désigne un hexagone régulier et ∂H son
bord :

∂H H

∂H/A H/B

f

La relation B est la relation décrite en 2, et A est la relation restreinte au bord de H. Il
s’agit donc de la relation qui identifie les six côtés deux à deux selon l’ordre et le sens indiqué
par le mot a1 ⋆ b1 ⋆ a

−1
2 ⋆ b2 ⋆ c1 ⋆ c2. Comme tous les sommets sont identifiés, l’espace ∂H/A

est un wedge de trois cercles S1
a ∨ S1

b ∨ S1
c . L’indice permet de se souvenir de quels segments

chaque cercle est issu, et on appelle le lacet faisant le tour du cercle par la même lettre. Ainsi
a : S1 → S1

a ∨ S1
b ∨ S1

c désigne l’homéomorphisme S1 → S1
a suivi de l’inclusion canonique

dans le wedge. Le carré ci-dessus nous permet d’identifier H/B à homéomorphisme près avec
le pushout de ∂H/A ← ∂H ↪→ H, puisque la propriété universelle du pushout donne une
bijection continue entre deux espaces compacts et séparés.

Mais l’espace et sous-espace H et ∂H sont homéomorphes à D2 et S1 = ∂D2, si bien que
K#RP 2 est un espace homéomorphe au pushout du diagramme

D2 ←↩ S1 f ′
−→ S1

a ∨ S1
b ∨ S1

c



et il reste à identifier f ′ qui correspond à f ci-dessus :

f ′ : S1 ≈ ∂H
f−→ ∂H/A ≈ S1

a ∨ S1
b ∨ S1

c

Le premier homéomorphisme identifie le lacet t→ ei2πt avec la concaténation a1 ⋆b1 ⋆a
−1
2 ⋆b2 ⋆

c1 ⋆ c2 par la partie 1. En passant au quotient celui-ci devient précisément a ⋆ b ⋆ a−1 ⋆ b ⋆ c ⋆ c,
ce qui nous permet de conclure.

Remarque : La composition i ◦ f ′ où i est l’inclusion du wedge de trois cercles dans la somme
connexe factorise par D2 par la partie 3. Comme le disque est constractile, le lacet a⋆b⋆a−1

2 ⋆
b ⋆ c ⋆ c est homotopiquement trivial dans le disque, par conséquent aussi dans K#RP 2.

Exercice 4. Homotopies libres et conjugaison. Soit X un espace topologique connexe par
arcs, et soit x un point de X. On appelle lacet libre dans X une application continue f : S1 → X.
Deux lacets libres f0 et f1 sont dits librement homotopes s’ils sont homotopes (par une homotopie
non nécessairement pointée).

Montrer que l’ensemble des classes d’homotopie libre est en bijection avec l’ensemble des classes de
conjugaison de π1(X, x).

Solution 4. On note L(X) l’ensemble des classes d’homotopie libre de X. Comme deux lacets
homotopes sont bien entendu également librement homotopes, il y a une application bien définie

π1(X, x)→ L(X)

envoyant la classe d’un lacet sur sa classe d’homotopie libre. Elle est surjective : soit γ un lacet de
base un point y ∈ X, et soit ℓ : [0, 1]→ X un chemin de x vers y. Alors γ est librement homotope
au chemin ℓγℓ−1 par l’homotopie :

H(t, s) =


ℓ(s+ 4t(1− s)) si 0 ≤ t ≤ 1

4

γ(4t− 1) si 1
4
≤ t ≤ 1

2

ℓ(s+ (1− s)(2− 2t)) si 1
2
≤ t ≤ 1

Nous devons montrer que cette application est constante sur les classes de conjugaison dans π1(X, x).
Pour cela, on peut encore utiliser l’homotopie ci-dessus. L’application ci-dessus passe donc au
quotient pour donner une application bien définie des classes de conjugaison dans π1(X, x) vers
L(X). Il suffit maintenant de montrer qu’elle est injective, c’est-à-dire que deux lacets basés en x
et librement homotopes sont conjugués dans π1(X, x).
Soient f0 et f1 deux lacets basés en x et librement homotopes, et soit H : [0, 1] × [0, 1] → X une
homotopie libre telle que H(·, 0) = f0 et H(·, 1) = f1. On remarque que le chemin γ : t 7→ H(0, t)
est un lacet basé en x. Nous allons construire une homotopie de lacets entre f0 et γf1γ

−1. À temps
t, cette homotopie parcourt le lacet γ de 0 à t, puis parcourt le lacet H(·, t), puis reparcourt γ de
t à 0. Une telle homotopie est donnée par exemple par :

H(t, s) =


H(0, 4st) si 0 ≤ t ≤ 1

4

H(4t− 1, s) si 1
4
≤ t ≤ 1

2

H(0, s(2− 2t)) si 1
2
≤ t ≤ 1

Remarque. Une autre manière de voir qu’un lacet et son conjugué sont librement homotopes :
soient α, β deux lacets. On rappelle que par définition αβ est le lacet γ qui parcourt tout α pendant



une moitié du temps (s ∈ [0, 1/2]), et β pendant l’autre moitié du temps (s ∈ [1/2, 1]). On construit
une homotopie libre entre αβ et βα de la manière suivante : à l’instant t, l’application H(·, t)
commence à parcourir α de t à 1, ensuite parcourt β, puis reparcourt α de 0 à t.

H(t, s) =

{
αβ(t+ s

2
) si 0 ≤ t ≤ 1−s

2

αβ(t− 1 + s
2
) si 1−s

2
≤ t ≤ 1

Ainsi, β est librement homotope à α−1βα.

Exercice 5. Théorème de Brouwer. On appelle rétraction une application (pointée) r : X → X
telle que r(X) = A et r|A = idA. Notons i l’inclusion (pointée) de A dans X. Si a est le point base
de A on choisit x = i(a) comme point base pour X.

1. Montrer que si r : X → A est une rétraction, on a une injection i∗ : π1(A, a)→ π1(X, x).

2. Montrer que toute application h : D2 → D2 admet un point fixe, i.e. x ∈ D2 tel que h(x) = x.

Indication : Raisonner par l’absurde. Chercher à utiliser la question 1 avec A = S1 et X = D2.

Solution 5.

1. Comme r ◦ i = idA, on a que (idA)∗ = (r ◦ i)∗ = r∗ ◦ i∗ est un isomorphisme, on obtient que
i∗ est injective.

2. Supposons par l’absurde que h(x) ̸= x pour tout x ∈ D2. On peut alors définir une application
r : D2 → S1 telle que r(x) est le point du bord de D2 qui intersecte la demi-droite partant
de h(x) et passant par x (faire un dessin). Il est clair que r est continue puisque h l’est. De
plus, si x ∈ S1, on a r(x) = x. Donc r est une rétraction de D2 sur S1, mais par la question
1 et comme il n’y a pas d’injection π1(S

1)→ π1(D
2), c’est absurde.


